
Implementing Classes in Java, using

• Documented Stubs

• Test-First Programming

Check out BankAccount and WordGames from SVN

 Encapsulation

 Java classes:

◦ Implementation details

◦ “How To” example

◦ Practice in WordGames project

 Encapsulation—separating implementation
details from how an object is used
◦ Client code sees a black box with a known interface

◦ Implementation can change without changing client

Functions Objects

Black box
exposes

Function
signature

Constructor and
method
signatures

Encapsulated
inside the box

Operation
implementation

Data storage and
operation
implementation

Q1, 2

 Essentially based on Big Java

◦ But using explicit this references

◦ And putting fields at the top of the class

 Comparing and contrasting with Python

◦ Source code with Python examples is in SVN for
reference

 Next slide shows the entire class

◦ Subsequent slides discuss it piece by piece

The BankAccount

class

A class has 3 parts after its
header: fields, constructors
and methods.

Java Python

/** javadoc… */

public class BankAccount {

...

}

class BankAccount:

"""docstring..."""

…

Access specifier (aka visibility), one of:

• public,

• protected,

• private, or

• default (i.e., no specifier, called package visibility)

Java classes are usually declared public

Q3

Name of class, follows
the class keyword

Javadoc comment precedes
the class definition

Java Python

/** javadoc… */

public void deposit(double amount) {

...

}

def deposit(self, amount):

"""docstring..."""

...

Access
specifier

Java methods usually are a mix of
public (when used by objects of
other classes) and private (when
used only within this class).

Return type
• void means
nothing returned

Parameters with types
• Do not list “self” as in Python

Q4-6

Javadoc comment precedes the method definition (always if
the method is public, optionally if the method is private)

Java Python

/** javadoc… */

public BankAccount() {

...

}

/** javadoc… */

public BankAccount(double initAmount)

{

...

}

def __init__(self,

initAmt=0.0):

"""docstring..."""

...

Access
specifier

Java constructors are
almost always public

Constructor
name is always
the same as the
class name

Parameters with types
• Do not list “self” as in Python

No explicit return type

• If you accidentally put a return

type, it is a weirdly named
method, not a constructor!

Use overloading
to handle default
argument values

Q7-9

Javadoc comment precedes
the constructor definition

 The public interface of an
object:

◦ Is the inputs and outputs of
the black box

◦ Defines how we access the
object as a user

◦ Consists of:

 public constructors of its
class, plus

 public methods of its class

 The private implementation
of an object consists of:

◦ Its (private) instance fields

◦ Definitions of its constructors
and methods

BankAccount

BankAccount()

BankAccount(double initAmount)

void deposit(double amount)

void withdraw(double amount)

double getBalance()

Q10

The above shows the public interface of BankAccount objects.
The next slides show their private implementation.

Java Python

/** javadoc as needed… */

private double balance;

No instance field
definitions in
Python

Access
specifier

Java instance fields
should almost
always be private

Name
Type

An object is
an instance
of a class

Q11

Generally no Javadoc here, since you should
choose variable names that are self-documenting.

When do you need
a field?

Answer: Whenever you
have data that is
associated with the
object, that needs to
remain alive as long as
the object remains alive.

Java Python

/** javadoc… */

public BankAccount(double initAmount) {

this.balance = initAmount;

}

def __init__(self,

initAmt=0.0):

"""docstring..."""

self.balance = initAmt

Use the this keyword
inside constructors and
methods to refer to the
implicit argument

Q12

Java Python

/** javadoc… */

public double getBalance() {

return this.balance;

}

/** javadoc… */

public void deposit(double amount) {

double newBalance =

this.balance + amount;

this.balance = newBalance;

}

def getBalance(self):

"""docstring..."""

return self.balance

def deposit(self, amount):

"""docstring..."""

newBal =

self.balance

+ amount

self.balance = newBal

Can omit return
for void methods

The deposit method has a parameter variable (amount), a local
variable (newBalance), and a reference to a field (this.balance).
• Do you see the difference between these types of variables?

Q13,14

The BankAccount

class (summary)

private field

Reference to the field,
using the this keyword

Constructor

Another constructor. Note overloading.

deposit method. Note the use of a
parameter, local variable and field.

Withdraw method

A getter method that
preserves the encapsulation
of the private field.

But surely I owe you an accurate answer!

1. Create the (initially empty) class

◦ File ⇒ New ⇒ Class

2. Write documented stubs for the public interface of the class

◦ Find out which methods you are asked to supply

 If the class implements an interface, then the interface tells
you exactly which methods you must implement

 And Eclipse volunteers to type their stubs for you!

◦ Documented stubs means that you write the documentation at this
step (BEFORE fully implementing the constructors and methods, that
is, while they are only stubs)

3. Implement the class:

◦ Determine and implement instance fields

◦ Implement constructors and methods, adding private methods and
additional instance fields as needed

4. Test the class

3. Test and implement each
constructor and method
• Write the test cases BEFORE

implementing the constructor/method

The BankAccount project that you checked out of SVN has the
code that we just discussed. Examine it at your leisure.

Turn now to the WordGames project that you checked out of
SVN. Let’s together:

• Study the StringTransformable interface.

• Write a Shouter class that implements StringTransformable.
Its transform method should return its given String
transformed into all UPPER-CASE (“shouting”).

1. Create the (initially empty) class

2. Write documented stubs (use Quick Fix!)

3. Write tests, then implement and test the class

4. Commit your work

• When you are done with Shouter, continue per the
WordGames instructions (linked from Homework 4).

Step 1: Create the (initially empty) class

◦ File ⇒ New ⇒ Class

Step 2: Write documented stubs for the public interface of the class

Do you understand what it means to implement an interface ?

Do you see what a stub is?

Did you see how Eclipse offered to write the stubs for you?

Note the TODO’s: The above is not yet a documented stub – see the next slide for that.

Step 1: Create the (initially empty) class

◦ File ⇒ New ⇒ Class

Step 2: Write documented stubs for the public interface of the class

Do you understand what it means to use documented stubs ?

Do you know what you must document? (Answer: anything public.)

Do you see the form for Javadoc

comments? For their tags?

The form for a class?

Step 1: Create the (initially empty) class

Step 2: Write documented stubs for the public interface of the class

Step 3a: We provided some JUnit tests for the transform method of each class.

Do you understand why you

write tests before

implementing ?

Do you see what a field is?

Why one is used here? (Answer:

so the Shouter can be reused in all the

tests. It would also be OK to construct a

new Shouter for each test.)

Did you see how the

assertEquals method works?

How you specify a test? How the

@Before and @Test annotations work?

Look at the (many)

tests we supplied in

ShouterTest. Are they

a good set of tests, with

good coverage? Could

we test how fast Shouter’s

transform runs?

Do you understand how Eclipse helps you find the right method to apply

to the stringToTransform? (Pause after typing the dot.)

Do you see why you don’t need a local variable?

Do you know Java’s 1st dirty little secret about constructors? (Namely, that

Java inserted a do-nothing constructor for you! More on this later.)

 Censor: given blah, produces the result of replacing each

occurrence of the character (not string) foo in blah with an
asterisk, where foo is the character that the particular
Censor censors.

 How do you deal with foo?

◦ Can it be a parameter of transform?

 No, that violates the StringTransformable interface

◦ Can it be a local variable of transform?

 No, it needs to live for the entire lifetime of the Censor.

◦ What’s left?

 Answer: It is a field ! (What is a sensible name for the field?)

 How do you initialize the field for foo?

◦ Answer: by using Censor’s constructors!

Let’s together:

• Write a Censor class that implements StringTransformable.

Its transform method should return the result of replacing

each occurrence of the character (not string) foo in blah

with an asterisk, where foo is the character that the

particular Censor censors.

1. Create the (initially empty) class

2. Write documented stubs (use Quick Fix!)

3. Write tests, then implement and test the class

4. Commit your work

• When you are done with Censor, continue per the

WordGames instructions (linked from Homework 4).

Do you understand what it means to

implement an interface ?

Do you see what a stub is? Did you see how

Eclipse offered to write the stubs for you?

Note the TODO’s: The above is not yet a

documented stub – see the next slide for that.

Do you see why you need stubs for

the two Censor constructors? (See

the calls to them in the CensorTest class.)

Step 1: Create the (initially empty) class

Step 2: Write documented stubs for
the public interface of the class

Do you understand

what it means to use

documented stubs ?

Do you know what

you must document?
(Answer: anything public.)

Step 1: Create the
(initially empty) class

Step 2: Write
documented stubs
for the public
interface of the class

private char characterToCensor;

this.characterToCensor = ‘e’;

this.characterToCensor =

characterToCensure;

Do you see why Censor

needs a field? How the

field is initialized? How

the field is referenced

(using this)?

How Censor has two

constructors? How those

constructors are called in

CensorTest?

Should we have made a field for the

‘*’ constant? (Probably.)

Censor

final version

